- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Betancourt, Frank (2)
-
Nichols, Daniel (2)
-
Tomov, Stanimire (2)
-
Wong, Kwai (2)
-
Asemota, Efosa (1)
-
Dongarra, Jack (1)
-
Marshall, Quindell (1)
-
Tomov, Nathalie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we present work towards the development of a new data analytics and machine learning (ML) framework, called MagmaDNN. Our main goal is to provide scalable, high-performance data analytics and ML solutions for scientific applications running on current and upcoming heterogeneous many-core GPU-accelerated architectures. To this end, since many of the functionalities needed are based on standard linear algebra (LA) routines, we designed MagmaDNN to derive its performance power from the MAGMA library. The close integration provides the fundamental (scalable high-performance) LA routines available in MAGMA as a backend to MagmaDNN. We present some design issues for performance and scalability that are specific to ML using Deep Neural Networks (DNN), as well as the MagmaDNN designs towards overcoming them. In particular, MagmaDNN uses well established HPC techniques from the area of dense LA, including task-based parallelization, DAG representations, scheduling, mixed-precision algorithms, asynchronous solvers, and autotuned hyperparameter optimization. We illustrate these techniques and their incorporation and use to outperform other frameworks, currently available.more » « less
-
Betancourt, Frank; Wong, Kwai; Asemota, Efosa; Marshall, Quindell; Nichols, Daniel; Tomov, Stanimire (, PEARC19)openDIEL is a workflow engine that aims to give researchers and users of HPC an efficient way to coordinate, organize, and interconnect many disparate modules of computation in order to effectively utilize and allocate HPC resources [13]. A GUI has been developed to aid in creating workflows, and allows for the specification of data science jobs, including specification neural network architectures, data processing, and hyperparameter tuning. Existing machine learning tools can be readily used in the openDIEL, allowing for easy experimentation with various models and approaches.more » « less
An official website of the United States government

Full Text Available